4.3 Linearly Independent Sets; Bases

In this section, we generalize the notions of linearly independent sets and bases to vector spaces. The definition and results are almost identical but in a more general setting.

An indexed set of vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ in V is said to be linearly independent if the vector equation

$$
\begin{equation*}
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}=\mathbf{0} \tag{1}
\end{equation*}
$$

has only the trivial solution, $c_{1}=0, \ldots, c_{p}=0$.
The set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is said to be linearly dependent if (1) has a nontrivial solution, that is, if there are some weights, c_{1}, \ldots, c_{p}, not all zero, such that (1) holds. In such a case, (1) is called a linear dependence relation among $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$.

Theorem 4. An indexed set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ of two or more vectors, with $\mathbf{v}_{1} \neq \mathbf{0}$, is linearly dependent if and only if some \mathbf{v}_{j} (with $j>1$) is a linear combination of the preceding vectors, $\mathbf{v}_{1}, \ldots, \mathbf{v}_{j-1}$.

Definition Let H be a subspace of a vector space V. A set of vectors \mathcal{B} in V is a basis for H if
(i) \mathcal{B} is a linearly independent set, and
(ii) the subspace spanned by \mathcal{B} coincides with H; that is,

$$
H=\operatorname{Span} \mathcal{B}
$$

Example 1. Determine which sets in the following are bases for \mathbb{R}^{3}. Of the sets that are not bases, determine which ones are linearly independent and which ones span \mathbb{R}^{3}. Justify your answers.
(1) $\left[\begin{array}{r}2 \\ -2 \\ 1\end{array}\right],\left[\begin{array}{r}1 \\ -3 \\ 2\end{array}\right],\left[\begin{array}{r}-7 \\ 5 \\ 4\end{array}\right]$

Consider the matrix whose columns are the given vectors.

$$
\left[\begin{array}{ccc}
2 & 1 & -7 \\
-2 & -3 & 5 \\
1 & 2 & 4
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

So the matrix has 3 pion positions.
Thus the columns form a basis for \mathbb{R}^{3}.
(2) $\left[\begin{array}{r}1 \\ -3 \\ 0\end{array}\right],\left[\begin{array}{r}-2 \\ 9 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}0 \\ -3 \\ 5\end{array}\right]$

Since the zero vector is in the given set, the set cannot be linearly independent tums cannot be a basis for \mathbb{R}^{3}.
$\left[\begin{array}{rrrr}1 & -2 & 0 & 0 \\ -3 & 9 & 0 & -3 \\ 0 & 0 & 0 & 5\end{array}\right] \sim\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ The matrix has a pivot position in each row. Thus the given set of vectors spans \mathbb{R}^{3}.

Example 2. Find a basis for the set of vectors in \mathbb{R}^{3} in the plane $x+3 y+z=0$. [Hint: Think of the equation as a "system" of homogeneous equations.]

ANS: Let $A=\left[\begin{array}{lll}1 & 3 & 1\end{array}\right]$. Then the given plane $x+3 y+z=0$ is the same as $A \vec{\nu}=\overrightarrow{0}$, where $\vec{v}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$
So we need to find $N u \mid A$.
So we need to find NulA.
Then $x=-3 y-z$ with y, z as free varibles.

$$
\text { ie. } \vec{v}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-3 y-z \\
y \\
z
\end{array}\right]=y\left[\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right]+z\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

and a basis for NolA is $\left\{\left[\begin{array}{c}-3 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]\right\}$

Theorem 5. The Spanning Set Theorem
Let $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ be a set in a vector space V, and let $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$.
a. If one of the vectors in S-say, \mathbf{v}_{k}-is a linear combination of the remaining vectors in S, then the set formed from S by removing \mathbf{v}_{k} still spans H.
b. If $H \neq\{0\}$, some subset of S is a basis for H.

Example 3. Let $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$, and $H=\left\{\begin{array}{l}s \\ s \\ 0\end{array}\right]: s$ in $\left.\mathbb{R}\right\}$. Then every vector in H is a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2} because

$$
\left[\begin{array}{l}
s \\
s \\
0
\end{array}\right]_{3}=s\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Is $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ a basis for H ? a line in \mathbb{R}^{3}
a plane in \mathbb{R}^{3}
Question $\quad \neq \operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$
We observe that \vec{v}_{1}, \vec{v}_{2} are not in H. so $\left\{v_{1}, v_{2}\right\}$
cannot be a basis for H.

The Row Space
If A is an $m \times n$ matrix, each row of A has n entries and thus can be identified with a vector in \mathbb{R}^{n}. The set of all linear combinations of the row vectors is called the row space of A and is denoted by Row A.

Remark:

1. Each row has n entries, so Row A is a subspace of \mathbb{R}^{n}.
2. Since the rows of A are identified with the columns of A^{T}, we could also write $\operatorname{Col} A^{T}$ in place of Row A.

Bases for Vul A, Col A, and Row A
Theorem 6. The pivot columns of a matrix A form a basis for $\operatorname{Col} A$.

Theorem 7. If two matrices A and B are row equivalent, then their row spaces are the same. If B is in echelon form, the nonzero rows of B form a basis for the row space of A as well as for that of B.

Example 4. Assume that A is row equivalent to B. Find bases for $\operatorname{Nul} A, \operatorname{Col} A$, and Row A.

$$
A=\left[\begin{array}{rrrrr}
1 & 2 & -5 & 11 & -3 \\
2 & 4 & -5 & 15 & 2 \\
1 & 2 & 0 & 4 & 5 \\
3 & 6 & -5 & 19 & -2
\end{array}\right], B=\left[\begin{array}{rrrrr}
1 & 2 & 0 & 4 & 5 \\
0 & 0 & 5 & -7 & 8 \\
0 & 0 & 0 & 0 & -9 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The pivot columns for A are columns 1, 3,5. Thus a basis for coll by Thu 6 is $\left\{\left[\begin{array}{l}1 \\ 2 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{c}-5 \\ -5 \\ 0 \\ -5\end{array}\right],\left[\begin{array}{c}-3 \\ 2 \\ 5 \\ -2\end{array}\right]\right\}$
For $\operatorname{Nu|A}$, we need to solve $A \vec{x}=\overrightarrow{0}$. From the information of B. we have $\left\{\begin{array}{l}x_{1}=-2 x_{2}-4 x_{4} \\ x_{3}=\frac{7}{5} x_{4} \\ x_{5}=0\end{array}\right.$. So $\vec{x}=x_{2}\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{c}-4 \\ 0 \\ \frac{7}{5} \\ 1 \\ 0\end{array}\right]$.

$$
\text { Thus a basis for } N_{n} \mid A \text { is }\left\{\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-4 \\
0 \\
7 \\
\frac{7}{5} \\
1 \\
0
\end{array}\right]\right\}
$$

A basis for Row A can be taken from the nonzero rows of β :

$$
\left\{\left[\begin{array}{llll}
1 & 0 & 4 & 5
\end{array}\right],\left[\begin{array}{lllll}
0 & 0 & 5 & -7 & 8
\end{array}\right],\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & -9
\end{array}\right]\right\} .
$$

Example 5. Consider the polynomials $\mathbf{p}_{1}(t)=1+t^{2}$ and $\mathbf{p}_{2}(t)=1-t^{2}$. Is $\left\{\mathbf{p}_{1}, \mathbf{p}_{2}\right\}$ a linearly independent set in \mathbb{P}_{3} ? Why or why not?

ANS: Observe that $p_{1}(t)$ and $p_{2}(-l)$ are not scalar multiples of each other. So $\left\{p_{1}, p_{2}\right\}$ is a linearly independent set in \mathbb{P}_{3}

