4.3 Linearly Independent Sets; Bases

In this section, we generalize the notions of linearly independent sets and bases to vector spaces. The definition and results are almost identical but in a more general setting.

An indexed set of vectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ in V is said to be **linearly independent** if the vector equation

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_p \mathbf{v}_p = \mathbf{0} \tag{1}$$

has only the trivial solution, $c_1=0,\ldots,c_p=0.$

The set $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ is said to be **linearly dependent** if (1) has a nontrivial solution, that is, if there are some weights, c_1, \ldots, c_p , not all zero, such that (1) holds. In such a case, (1) is called a linear dependence relation among $\mathbf{v}_1, \ldots, \mathbf{v}_p$.

Theorem 4. An indexed set $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ of two or more vectors, with $\mathbf{v}_1 \neq \mathbf{0}$, is linearly dependent if and only if some \mathbf{v}_j (with j > 1) is a linear combination of the preceding vectors, $\mathbf{v}_1, \ldots, \mathbf{v}_{j-1}$.

Definition Let H be a subspace of a vector space V. A set of vectors \mathcal{B} in V is a **basis** for H if (i) \mathcal{B} is a linearly independent set, and (ii) the subspace spanned by \mathcal{B} coincides with H; that is,

$$H = \operatorname{Span} \mathcal{B}$$

Example 1. Determine which sets in the following are bases for \mathbb{R}^3 . Of the sets that are not bases, determine which ones are linearly independent and which ones span \mathbb{R}^3 . Justify your answers.

(1) $\begin{bmatrix} 2\\-2\\1 \end{bmatrix}$, $\begin{bmatrix} 1\\-3\\2 \end{bmatrix}$, $\begin{bmatrix} -7\\5\\4 \end{bmatrix}$
Consider the matrix whose columns are the given vectors.
$ \begin{bmatrix} 2 & 1 & -7 \\ -2 & -3 & 5 \\ 1 & 2 & 4 \end{bmatrix} \land \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} $
So the matrix has 3 pivot positions.
Thus the columne form a basis for IR3.

$$(2) \begin{bmatrix} 1\\-3\\0 \end{bmatrix}, \begin{bmatrix} -2\\9\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\-3\\5 \end{bmatrix}$$

Since the zero vector is in the given set, the set cannot be linearly independent thus cannot be a basis for \mathbb{R}^3 . $\begin{pmatrix} 1 & -2 & 0 & 0 \\ -3 & 9 & 0 & -3 \\ 0 & 0 & 5 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ The matrix has a pivot position in each row. Thus the given set of vectors spans \mathbb{R}^3 .

Example 2. Find a basis for the set of vectors in \mathbb{R}^3 in the plane x + 3y + z = 0. [Hint: Think of the equation as a "system" of homogeneous equations.]

ANS: Let
$$A = \begin{bmatrix} 1 & 3 & 1 \end{bmatrix}$$
. Then the given plane $x + 3y + z = 0$
is the same as $A\vec{y} = \vec{0}$, where $\vec{y} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$
So we need to find NulA.
Then $x = -3y - z$ with y, z as free varibles.
i.e.
 $\vec{y} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -3y - z \\ y \\ z \end{bmatrix} = y \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix} + z \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$
and a basis for NulA is $\begin{cases} \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$

The Spanning Set Theorem

Theorem 5. The Spanning Set Theorem

Let $S=\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}$ be a set in a vector space V, and let $H=\mathrm{Span}\,\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}.$

a. If one of the vectors in S-say, \mathbf{v}_k -is a linear combination of the remaining vectors in S, then the set formed from S by removing \mathbf{v}_k still spans H.

b. If $H
eq \{0\}$, some subset of S is a basis for H.

Example 3. Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
, and $H = \left\{ \begin{bmatrix} s \\ s \\ 0 \end{bmatrix} : s \text{ in } \mathbb{R} \right\}$. Then every vector in H is a linear combination of \mathbf{v}_1 and \mathbf{v}_2 because
$$\begin{bmatrix} s \\ s \\ 0 \end{bmatrix} = s \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
Is $\{\mathbf{v}_1, \mathbf{v}_2\}$ a basis for H ? A line in \mathbb{R}^3 a plane in \mathbb{R}^3
Question $\mathcal{H} \neq Span ? \vec{v}_1, \vec{v}_2$.
We observe that \vec{v}_1, \vec{v}_2 are not in \mathcal{H} . So $\{v_1, v_2\}$ cannot be a basis for \mathcal{H} .

The Row Space

If A is an $m \times n$ matrix, each row of A has n entries and thus can be identified with a vector in \mathbb{R}^n . The set of all linear combinations of the row vectors is called the **row space of** A and is denoted by Row A.

Remark:

- 1. Each row has n entries, so Row A is a subspace of \mathbb{R}^n .
- 2. Since the rows of A are identified with the columns of A^T , we could also write $\operatorname{Col} A^T$ in place of Row A.

Bases for Nul A, Col A, and Row A

Theorem 6. The pivot columns of a matrix A form a basis for $\operatorname{Col} A$.

Theorem 7. If two matrices A and B are row equivalent, then their row spaces are the same. If B is in echelon form, the nonzero rows of B form a basis for the row space of A as well as for that of B.

Example 4. Assume that A is row equivalent to B. Find bases for Nul A, Col A, and Row A.

A basis for Row A can be taken from the nonzero rows of B: ?[12045],[005-78],[0000-9]]. **Example 5.** Consider the polynomials $\mathbf{p}_1(t) = 1 + t^2$ and $\mathbf{p}_2(t) = 1 - t^2$. Is $\{\mathbf{p}_1, \mathbf{p}_2\}$ a linearly independent set in \mathbb{P}_3 ? Why or why not?